Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12284-12294, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698720

RESUMO

Multiwall WS2 nanotubes have been synthesized from W18O49 nanowhiskers in substantial amounts for more than a decade. The established growth model is based on the "surface-inward" mechanism, whereby the high-temperature reaction with H2S starts on the nanowhisker surface, and the oxide-to-sulfide conversion progresses inward until hollow-core multiwall WS2 nanotubes are obtained. In the present work, an upgraded in situ SEM µReactor with H2 and H2S sources has been conceived to study the growth mechanism in detail. A hitherto undescribed growth mechanism, named "receding oxide core", which complements the "surface-inward" model, is observed and kinetically evaluated. Initially, the nanowhisker is passivated by several WS2 layers via the surface-inward reaction. At this point, the diffusion of H2S through the already existing outer layers becomes exceedingly sluggish, and the surface-inward reaction is slowed down appreciably. Subsequently, the tungsten suboxide core is anisotropically volatilized within the core close to its tips. The oxide vapors within the core lead to its partial out-diffusion, partially forming a cavity that expands with reaction time. Additionally, the oxide vapors react with the internalized H2S gas, forming fresh WS2 layers in the cavity of the nascent nanotube. The rate of the receding oxide core mode increases with temperatures above 900 °C. The growth of nanotubes in the atmospheric pressure flow reactor is carried out as well, showing that the proposed growth model (receding oxide core) is also relevant under regular reaction parameters. The current study comprehensively explains the WS2 nanotube growth mechanism, combining the known model with contemporary insight.

2.
Nat Mater ; 23(3): 331-338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37537355

RESUMO

The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.

3.
Nano Lett ; 23(22): 10259-10266, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37805929

RESUMO

WS2 nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS2 nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000-5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W5O14 nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W18O49 nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS2 nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 µm long WS2 nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.

4.
J Phys Chem C Nanomater Interfaces ; 127(25): 12404-12413, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37405362

RESUMO

We report on the optical properties of a CsPbBr3 polycrystalline thin film on a single grain level. A sample composed of isolated nanocrystals (NCs) mimicking the properties of the polycrystalline thin film grains that can be individually probed by photoluminescence spectroscopy was prepared. These NCs were analyzed using correlative microscopy allowing the examination of structural, chemical, and optical properties from identical sites. Our results show that the stoichiometry of the CsPbBr3 NCs is uniform and independent of the NCs' morphology. The photoluminescence (PL) peak emission wavelength is slightly dependent on the dimensions of NCs, with a blue shift up to 9 nm for the smallest analyzed NCs. The magnitude of the blueshift is smaller than the emission line width, thus detectable only by high-resolution PL mapping. By comparing the emission energies obtained from the experiment and a rigorous effective mass model, we can fully attribute the observed variations to the size-dependent quantum confinement effect.

5.
Nano Lett ; 23(13): 6010-6017, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387593

RESUMO

Fabrication of chiral assemblies of plasmonic nanoparticles is a highly attractive and challenging task, with promising applications in light emission, detection, and sensing. So far, primarily organic chiral templates have been used for chirality inscription. Despite recent progress in using chiral ionic liquids in synthesis, the use of organic templates significantly limits the variety of nanoparticle preparation techniques. Here, we demonstrate the utilization of seemingly achiral inorganic nanotubes as templates for the chiral assembly of nanoparticles. We show that both metallic and dielectric nanoparticles can be attached to scroll-like chiral edges propagating on the surfaces of WS2 nanotubes. Such assembly can be performed at temperatures as high as 550 °C. This large temperature range significantly widens the portfolio of nanoparticle fabrication techniques, allowing us to demonstrate a variety of chiral nanoparticle assemblies, ranging from metals (Au, Ga), semiconductors (Ge), and compound semiconductors (GaAs) to oxides (WO3).

6.
ACS Nano ; 16(11): 18757-18766, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36305551

RESUMO

Surface-guided growth has proven to be an efficient approach for the production of nanowire arrays with controlled orientations and their large-scale integration into electronic and optoelectronic devices. Much has been learned about the different mechanisms of guided nanowire growth by epitaxy, graphoepitaxy, and artificial epitaxy. A model describing the kinetics of surface-guided nanowire growth has been recently reported. Yet, many aspects of the surface-guided growth process remain unclear due to a lack of its observation in real time. Here we observe how surface-guided nanowires grow in real time by in situ scanning electron microscopy (SEM). Movies of ZnSe surface-guided nanowires growing on periodically faceted substrates of annealed M-plane sapphire clearly show how the nanowires elongate along the substrate nanogrooves while pushing the catalytic Au nanodroplet forward at the tip of the nanowire. The movies reveal the timing between competing processes, such as planar vs nonplanar growth, catalyst-selective vapor-liquid-solid elongation vs nonselective vapor-solid thickening, and the effect of topographic discontinuities of the substrate on the growth direction, leading to the formation of kinks and loops. Contrary to some observations for nonplanar nanowire growth, planar nanowires are shown to elongate at a constant rate and not by jumps. A decrease in precursor concentration as it is consumed after long reaction time causes the nanowires to shrink back instead of growing, thus indicating that the process is reversible and takes place near equilibrium. This real-time study of surface-guided growth, enabled by in situ SEM, enables a better understanding of the formation of nanostructures on surfaces.

7.
Chem Mater ; 34(4): 1838-1853, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35237027

RESUMO

Misfit layered compounds (MLCs) MX-TX2, where M, T = metal atoms and X = S, Se, or Te, and their nanotubes are of significant interest due to their rich chemistry and unique quasi-1D structure. In particular, LnX-TX2 (Ln = rare-earth atom) constitute a relatively large family of MLCs, from which nanotubes have been synthesized. The properties of MLCs can be tuned by the chemical and structural interplay between LnX and TX2 sublayers and alloying of each of the Ln, T, and X elements. In order to engineer them to gain desirable performance, a detailed understanding of their complex structure is indispensable. MLC nanotubes are a relative newcomer and offer new opportunities. In particular, like WS2 nanotubes before, the confinement of the free carriers in these quasi-1D nanostructures and their chiral nature offer intriguing physical behavior. High-resolution transmission electron microscopy in conjunction with a focused ion beam are engaged to study SmS-TaS2 nanotubes and their cross-sections at the atomic scale. The atomic resolution images distinctly reveal that Ta is in trigonal prismatic coordination with S atoms in a hexagonal structure. Furthermore, the position of the sulfur atoms in both the SmS and the TaS2 sublattices is revealed. X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and X-ray absorption spectroscopy are carried out. These analyses conclude that charge transfer from the Sm to the Ta atoms leads to filling of the Ta 5d z 2 level, which is confirmed by density functional theory (DFT) calculations. Transport measurements show that the nanotubes are semimetallic with resistivities in the range of 10-4 Ω·cm at room temperature, and magnetic susceptibility measurements show a superconducting transition at 4 K.

8.
J Phys Chem C Nanomater Interfaces ; 125(18): 9973-9980, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34055129

RESUMO

Many of graphene's remarkable properties arise from its linear dispersion of the electronic states, forming a Dirac cone at the K points of the Brillouin zone. Silicene, the 2D allotrope of silicon, is also predicted to show a similar electronic band structure, with the addition of a tunable bandgap, induced by spin-orbit coupling. Because of these outstanding electronic properties, silicene is considered as a promising building block for next-generation electronic devices. Recently, it has been shown that silicene grown on Au(111) still possesses a Dirac cone, despite the interaction with the substrate. Here, to fully characterize the structure of this 2D material, we investigate the vibrational spectrum of a monolayer silicene grown on Au(111) by polarized Raman spectroscopy. To enable a detailed ex situ investigation, we passivated the silicene on Au(111) by encapsulating it under few layers hBN or graphene flakes. The observed spectrum is characterized by vibrational modes that are strongly red-shifted with respect to the ones expected for freestanding silicene. By comparing low-energy electron diffraction (LEED) patterns and Raman results with first-principles calculations, we show that the vibrational modes indicate a highly (>7%) biaxially strained silicene phase.

11.
J Phys Chem Lett ; 11(16): 6498-6504, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32787234

RESUMO

Formation of nanowire networks is an appealing strategy for demonstrating novel phenomena at the nanoscale, e.g., detection of Majorana Fermions, as well as an essential step in realizing complex nanowire-based architectures. However, a detailed description of mechanisms taking place during growth of such complex structures is lacking. Here, the experimental observations of gold-catalyzed germanium nanowire junction formation are explained utilizing phase field modeling corroborated with real-time in situ scanning electron microscopy. When the two nanowires collide head on during the growth, we observe two scenarios. (i) Two catalytic droplets merge into one, and the growth continues as a single nanowire. (ii) The droplets merge and subsequently split again, giving rise to the growth of two daughter nanowires. Both the experiments and modeling indicate the critical importance of the liquid-solid growth interface anisotropy and the growth kinetics in facilitating the structural transition during the nanowire merging process.

12.
ACS Appl Mater Interfaces ; 12(10): 11806-11814, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32036650

RESUMO

Memristors have shown an extraordinary potential to emulate the plastic and dynamic electrical behaviors of biological synapses and have been already used to construct neuromorphic systems with in-memory computing and unsupervised learning capabilities; moreover, the small size and simple fabrication process of memristors make them ideal candidates for ultradense configurations. So far, the properties of memristive electronic synapses (i.e., potentiation/depression, relaxation, linearity) have been extensively analyzed by several groups. However, the dynamics of electroforming in memristive devices, which defines the position, size, shape, and chemical composition of the conductive nanofilaments across the device, has not been analyzed in depth. By applying ramped voltage stress (RVS), constant voltage stress (CVS), and pulsed voltage stress (PVS), we found that electroforming is highly affected by the biasing methods applied. We also found that the technique used to deposit the oxide, the chemical composition of the adjacent metal electrodes, and the polarity of the electrical stimuli applied have important effects on the dynamics of the electroforming process and in subsequent post-electroforming bipolar resistive switching. This work should be of interest to designers of memristive neuromorphic systems and could open the door for the implementation of new bioinspired functionalities into memristive neuromorphic systems.


Assuntos
Eletrônica/instrumentação , Metais/química , Modelos Neurológicos , Nanoestruturas/química , Óxidos/química , Condutividade Elétrica , Desenho de Equipamento , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Sinapses/fisiologia
13.
Nanotechnology ; 29(20): 205603, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29509147

RESUMO

Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

14.
Nanoscale ; 8(36): 16182-6, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27603125

RESUMO

Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material with unique optical properties that make it attractive for two dimensional (2D) photonic and optoelectronic devices. However, broad deployment and exploitation of hBN is limited by alack of suitable material and device processing and nano prototyping techniques. Here we present a high resolution, single step electron beam technique for chemical dry etching of hBN. Etching is achieved using H2O as a precursor gas, at both room temperature and elevated hBN temperatures. The technique enables damage-free, nano scale, iterative patterning of supported and suspended 2D hBN, thus opening the door to facile fabrication of hBN-based 2D heterostructures and devices.

15.
Nano Lett ; 16(8): 4880-6, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458789

RESUMO

Hydride precursors are commonly used for semiconductor nanowire growth from the vapor phase and hydrogen is quite often used as a carrier gas. Here, we used in situ scanning electron microscopy and spatially resolved Auger spectroscopy to reveal the essential role of atomic hydrogen in determining the growth direction of Ge nanowires with an Au catalyst. With hydrogen passivating nanowire sidewalls the formation of inclined facets is suppressed, which stabilizes the growth in the ⟨111⟩ direction. By contrast, without hydrogen gold diffuses out of the catalyst and decorates the nanowire sidewalls, which strongly affects the surface free energy of the system and results in the ⟨110⟩ oriented growth. The experiments with intentional nanowire kinking reveal the existence of an energetic barrier, which originates from the kinetic force needed to drive the droplet out of its optimum configuration on top of a nanowire. Our results stress the role of the catalyst material and surface chemistry in determining the nanowire growth direction and provide additional insights into a kinking mechanism, thus allowing to inhibit or to intentionally initiate spontaneous kinking.

16.
Nanoscale ; 8(1): 266-75, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26608729

RESUMO

Growth of one-dimensional materials is possible through numerous mechanisms that affect the nanowire structure and morphology. Here, we explain why a wide range of morphologies is observed when silicon oxide nanowires are grown on silicon substrates using liquid gallium catalyst droplets. We show that a gallium oxide overlayer is needed for nanowire nucleation at typical growth temperatures, and that it can decompose during growth and, hence, dramatically alter the nanowire morphology. Gallium oxide decomposition is attributed to etching caused by hydrogen that can be supplied by thermal dissociation of H2O (a common impurity). We show that H2O dissociation is catalyzed by silicon substrates at temperatures as low as 320 °C, identify the material supply pathways and processes that rate-limit nanowire growth under dry and wet atmospheres, and present a detailed growth model that explains contradictory results reported in prior studies. We also show that under wet atmospheres the Ga droplets can be mobile and promote nanowire growth as they traverse the silicon substrate.

17.
Rev Sci Instrum ; 85(8): 083302, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173257

RESUMO

We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

18.
Microsc Microanal ; 20(4): 1312-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24844888

RESUMO

Since semiconductor devices are being scaled down to dimensions of several nanometers there is a growing need for techniques capable of quantitative analysis of dopant concentrations at the nanometer scale in all three dimensions. Imaging dopant contrast by scanning electron microscopy (SEM) is a very promising method, but many unresolved issues hinder its routine application for device analysis, especially in cases of buried layers where site-specific sample preparation is challenging. Here, we report on optimization of site-specific sample preparation by the focused Ga ion beam (FIB) technique that provides improved dopant contrast in SEM. Similar to FIB lamella preparation for transmission electron microscopy, a polishing sequence with decreasing ion energy is necessary to minimize the thickness of the electronically dead layer. We have achieved contrast values comparable to the cleaved sample, being able to detect dopant concentrations down to 1×10(16) cm-3. A theoretical model shows that the electronically dead layer corresponds to an amorphized Si layer formed during ion beam polishing. Our results also demonstrate that contamination issues are significantly suppressed for FIB-treated samples compared with cleaved ones.

19.
Nano Lett ; 14(4): 1756-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24528181

RESUMO

A liquid droplet sitting on top of a pillar is crucially important for semiconductor nanowire growth via a vapor-liquid-solid (VLS) mechanism. For the growth of long and straight nanowires, it has been assumed so far that the droplet is pinned to the nanowire top and any instability in the droplet position leads to nanowire kinking. Here, using real-time in situ scanning electron microscopy during germanium nanowire growth, we show that the increase or decrease in the droplet wetting angle and subsequent droplet unpinning from the growth interface may also result in the growth of straight nanowires. Because our argumentation is based on terms and parameters common for VLS-grown nanowires, such as the geometry of the droplet and the growth interface, these conclusions are likely to be relevant to other nanowire systems.

20.
ACS Nano ; 6(11): 10098-106, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23181715

RESUMO

Colloidal gold nanoparticles represent technological building blocks which are easy to fabricate while keeping full control of their shape and dimensions. Here, we report on a simple two-step maskless process to assemble gold nanoparticles from a water colloidal solution at specific sites of a silicon surface. First, the silicon substrate covered by native oxide is exposed to a charged particle beam (ions or electrons) and then immersed in a HF-modified solution of colloidal nanoparticles. The irradiation of the native oxide layer by a low-fluence charged particle beam causes changes in the type of surface-terminating groups, while the large fluences induce even more profound modification of surface composition. Hence, by a proper selection of the initial substrate termination, solution pH, and beam fluence, either positive or negative deposition of the colloidal nanoparticles can be achieved.


Assuntos
Coloides/química , Cristalização/métodos , Ouro/química , Íons Pesados , Nanopartículas Metálicas/química , Silício/química , Coloides/efeitos da radiação , Ouro/efeitos da radiação , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Aceleradores de Partículas , Tamanho da Partícula , Silício/efeitos da radiação , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...